
134

Int. J. Elec&Electr.Eng&Telecoms. 2014 Esterurani Jaladi and G S J Mani Kumar, 2014

AREA OPTIMIZED IMPLEMENTATION OF LOCAL

NEIGHBORHOOD FUNCTION IN ASIP

Esterurani Jaladi1* and G S J Mani Kumar2

*Corresponding Author: Esterurani Jaladi � jaladiestheru@gmail.com

As per the analysis of the paper, presents a systematic approach to the design of application-
specific instruction-set processors for high speed computation of local neighborhood functions
and intrafield deinterlacing. The intended application is real-time processing of high definition
video. The approach aims at an efficient utilization of the available memory bandwidth by fully
exploiting the data parallelism inherent to the target algorithm class. An appropriate choice of
custom instructions and application-specific registers is used together with a very long instruction
word architecture in order to mimic a pipelined systolic array. This leads to a processing speed
close to the limit imposed by memory bandwidth constraints. For three intrafield deinterlacing
algorithms and 2-D convolution with four kernel sizes, the design approach yields speedup
factors between 36 and 1330, Area-Time (AT) product improvements between 12 and 243, and
energy consumption reduction factors between 13 and 262.

Keywords: Application-specific instruction-set processors (ASIPs), Deinterlacing, Local
neighborhood functions, Video processing

INTRODUCTION

General-purpose instruction processors have
dominated computing for a long time. However,
they tend to lose performance when dealing
with non-standard operations and non-
standard data not supported by the instruction
set format. The need for customizing instruction
processors for specific applications is
particularly acute in embedded systems, such
as cell phones, medical appliances, digital
cameras and printers. One way of supporting

ISSN 2319 – 2518 www.ijeetc.com

Vol. 3, No. 4, October 2014

© 2014 IJEETC. All Rights Reserved

Int. J. Elec&Electr.Eng&Telecoms. 2014

customisation is to augment an instruction
processor with programmable logic for
implementing custom instructions and another
method is to implement them using existing
FPGAs.

Digital embedded systems typically contain
one or more programmable processors to run
application-specific software. A processor can
be general-purpose with extensive tool and
operating system support, or special-purpose

Research Paper

1 M.Tech. Student, Department of ECE, Chirala Engineering College, Chirala 523155, Prakasam Dt., AP.
2 Associate Professor, Department of ECE, Chirala Engineering College, Chirala 523155, Prakasam Dt., AP.

135

Int. J. Elec&Electr.Eng&Telecoms. 2014 Esterurani Jaladi and G S J Mani Kumar, 2014

with better performance and less versatility.
Microcontrollers and embedded controllers
are special kinds of programmable processors
used to control the embedded system and
monitor its environment, while digital signal
processors (DSP processors) are ideal for
high data rate computations.

In a hardware-software co-design
methodology, the hardware and software
components of an embedded system are
designed jointly. Once the designer has
determined which parts of the system
functionality will be implemented in hardware,
and which parts in software, then each of the
hardware and software components are
designed separately using appropriate tools
(hardware synthesis, code generation and
hardware-software co-simulation tools).
Depending upon the results of simulations, the
original design specification may be re-
repartitioned and the process reiterated until
the system requirements are satisfied.

Embedded systems, increasingly include
ASIPs (Application Specific Instruction Set
Processors). The key advantage of these
programmable components is a tradeoff
between efficiency and flexibility since
software allows late change in the design cycle
and reuse of existing hardware components.

MOORE’s law (Mollick E, 2006) is both a
blessing and a curse. On one hand, the
continuing scaling of semiconductor
processes allows for faster systems and
opens the door to applications which would
not have been possible or afford-able
otherwise. For example, we have seen in
recent years an explosion in offerings of high
denition and portable video applications

reaching the consumer market. However, this
continuing scaling also brings forward the
problem of the ever-increasing design
complexity of digital systems. To mitigate this
problem and make sure time-to-market
objectives are not jeopardized by increasing
design and verication efforts, new tools and
design methodologies must be developed in
parallel with the improvement of
semiconductor processes. These tools and
methodologies typically improve designers’
productivity by leveraging design automation
and higher levels of abstraction (Gerstlauer A
and Gajski D D, 2002).

A possible solution is to implement complex
digital functions using application-specic
instruction-set processors (ASIPs) (Jain M K
et al., 2001). This approach maintains some
of the exibility, ease of design and productivity
typically associated with general purpose
processors and software solutions while
approaching the efciency and performance of
dedicated hardware.

In this paper, we propose a systematic
approach to the design of ASIPs for high
speed computation of local neighborhood
functions and intra-eld deinterlacing. An
appropriate choice of custom instructions and
application-specic registers is used together
with a very long instruction word (VLIW)
architec-ture in order to mimic a pipelined
systolic array. This leads to processing speeds
close to the limits imposed by memory
bandwidth constraints. Control dependencies
are rst removed by transforming them into data
dependencies. Then, data pro-cessing single
instruction-multiple data (SIMD) instructions
and custom registers are chosen so as to form
the structure of a pipeline. Finally, an

136

Int. J. Elec&Electr.Eng&Telecoms. 2014 Esterurani Jaladi and G S J Mani Kumar, 2014

appropriate choice of custom load/store
instructions makes it possible to nd a
scheduling of the in-structions inside the inner
loop of the algorithm where one load or store
instruction is executed every single instruction
cycle. Data processing occurs concurrently
with load and store operations.

This paper is organized as follows. Section
II presents a short review of the related work.
Section III presents the application for better
understanding of subsequent sections. In this
section, terminology and notation used in the
remainder of this paper are introduced.
Section IV highlights the characteristics of
software code for the target class of algorithms
and suggests some code transformation
which aim at removing control dependencies.
In SectionV, the steps involved in the design
of the custom instructions are presented.
Finally, results are presented and discussed
in Section VI, followed by a conclusion
summarizing our main results in Section VII.

RELATED WORK

Re-targetable code generation tools play an
crucial role in the ASIP design process since
many instruction set architectures have to be
evaluated. The target architecture may be
changing in order to minimise cost, speed,
code size, and power consumption and/or to
increase performance of the whole system.
This is achieved by designing its architecture,
generating code for it, and then evaluating the
code for desired performance.

It has been shown that by using ASIPs, a
significant reduction in power consumption in
devices can be achieved. For instant, 50%
power reduction for ISDN-hands free phone.
Large instruction word allowed for low clock
frequency (France Telecom). 50% power
reduction in GSM application (Alcatel). Two

ASIPs replaced 8 commercial DSPs 50 MIPs
at 20Mhz instead of 116 Mhz (Italtel).

The best known local neighborhood function
is the 2-D con-volution. Many fast and area-
efcient architectures for imple-menting the 2-
D convolution have been proposed in the liter-
ature, with recent work focusing on
implementation in FPGAs (Cardells-Tormo F
and Molinet P L, 2006; Yadav D et al., xxxxx).
Architectures based on a linear systolic array
are com-monplace for the fast implementation
of local neighborhood functions. Examples of
this are the two-dimensional convolver
described in (Bosi B et al., 1999) and
(Diamantaras K I and Kung S Y, 1997), which
present the implementation of another class
of local neighborhood functions: morphological
functions. As an alternative to the classic linear
systolic array, a novel cell-based architecture
for fast local neighborhood image processing
is proposed in (Porter R B et al., 2006).

The use of ASIPs to implement complex
functions in dig-ital systems is an active eld of
research. Work has been pub-lished in recent
years about the use of ASIPs in areas as di-
verse as calculation of fast Fourier transforms
(FFTs) (Guan X et al., 2009), processing of
global positioning data (Kappen G et al.,
2007), error correcting codes decoding Alles
M et al., 2009), (Muller O et al., 2009),
cryptography (O’Melia S and Elbirt A J, 2010;
Groszschadl J et al., 2006), video
compression (Kim S D et al., 2006), and video
processing (Saponara S et al., 2007). Also, a
number of design automation solution vendors
now offer EDA tool suites for ASIP design.
These include Synopsys’ Processor Designer
(formerly CoWare), Tensilica’s Xtensa Xplorer,
and Target’s IP Designer.

137

Int. J. Elec&Electr.Eng&Telecoms. 2014 Esterurani Jaladi and G S J Mani Kumar, 2014

An alternative to ASIPs is provided by high-
level synthesis tools, which compile software
code into a synthesizable hard-ware
description. This is a solution similar to ASIP
ows in that the starting point is software code.
The SPARK (Gupta S et al., 2004) framework
improves code efciency using optimization
passes similar to the ones found in compilers,
but with a focus on leveraging instruction-level
parallelism. Then, it schedules operations from
the optimized software code onto a xed
number of functional units chosen from a library.
Finally, it generates VHDL code that contains
the instantiation of the functional units, as well
as a state machine and control logic that
implement the schedule. Another high level
synthesis tool which specically targets FPGAs
is ROCCC (Guo Z et al., 2005). In addition to
synthesizing the data path and control logic,
ROCCC also analyses the pattern of access
to data and improves the performance of local
neighbor-hood function implementations
through data reuse using smart buffers (Guo Z
et al., 2004). High processing speeds may be
obtained with this approach, especially when
the optimization techniques used by the tool
are tailored to the algorithm class (Buyukkurt
B and Najj W A, 2008).

We previously reported on a high
performance ASIP imple-mentation of the
PBDI intra-eld deinterlacing algorithm
(Aubertin P et al., 2009). In this paper, we
extend the scope of this work by proposing a
systematic ASIP design approach for real-time
local neighbor-hood video processing
applications. This approach leverages the
ASIP design ow in order to improve design
productivity.Com-pared to the high-level

synthesis approach, which also focusses on
design productivity, the ASIP ow and our
design approach result in more exible
designs, since the processor, in addition to its
custom instructions tailored to the application,
also retains its full generic instruction set.

LOCAL NEIGHBORHOOD

FUNCTIONS

Local neighborhood functions form a class of
algorithms of common use in image and video
processing. Each pixel in the output image is
calculated independently and is a function of
a small subset of the input image. This
subset—the window—contains the input pixel
having the same coordinates as the output
pixel, as well as some of its close neighbors.
As pixels of differing coordinates are
produced, the window “slides along”. Hence,
local neighborhood functions are also called
sliding window functions.

An image of width W and height H may be
represented by W x H the matrix

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

W

W

H H H W

p p p

p p p
P

p p p

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

�

�

� � � �

�

...(1)

where each element pi,j is a pixel. The
representation of each such pixel is
application-dependent. It is usually either a
scalar representing a luminance in the case
of grayscale images, or a vector representing
the color of the pixel in some color space in

the case of color images. The output image,
represented by Q matrix , is produced by F
applying the local neighborhood function , as

138

Int. J. Elec&Electr.Eng&Telecoms. 2014 Esterurani Jaladi and G S J Mani Kumar, 2014

follows:

qi,j = F(X(i, j)) ...(2)

where X(i, j), the window, is the h x w matrix

1,1 1,

,1 ,

(,)
w

h h w

x x

X i j

x x

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

�

� � �

�
...(3)

where

[] [],1 1. 1 1, 1 , 1, 1k i k j l ix p H h j W w+ − + −= ∀ ∈ − + ∈ − +

...(4)

meaning x1,1 is pi,j , and other elements of
are the neighboring pixels below and/or right
of pi,j. Formally, it is implied by (4) that the
output image is smaller than the input image
by h-1 lines and w-1 columns. This is because
these are the only coordinates for which all the
pixels in the window are defined. For example,
in X(i,W), x1,2 is pixel pi,W+1 , which is outside
the image. In practical implementations, the
size of the output image is often extended to
match that of the input image. Various means
of doing this exist. One option consists in
generating boundary pixels by using a
separate function which depends on a smaller
window.

Another option is to conceptually enlarge
the input image by copying existing pixels or
by giving the non-existent pixels outside the
input image a fixed value. Whole images are
scanned following a regular path. This leads
to a relationship where some pixels in the
window used to produce one pixel are also
present in the window used to generate the
next pixel. Without loss of generality, let us
assume that each image line is scanned from

left to right. In that case, if the Nth pixel
produced is qi,j, the N+1th pixel produced is
qi,j+1, assuming pi,j is not a boundary pixel.
This means that, when producing the Nth
pixel,x1,2 is pi,j+1 , and that same pixel
becomes x1,1when producing the N+1th pixel.
More generally, as the window slides from one
pixel to the next,xk,l for the Nth pixel becomes
xk,i-1for the N+1th pixel for k>1 . This property
of the local neighborhood functions offers
opportunities for data reuse. The most
common local neighborhood function is the
two dimensional convolution. It consists in
individually weighting each pixel of the window
and summing the weighted values, which can
be expressed as follows:

where the ak.l are the weights. The 2-D
convolution is useful to apply various types of
filters to an image in order to sharpen it, blur it,
enhance features such as edges, etc. Other
simple local neighborhood functions include
dilation and erosion. A notable class of
complex local neighborhood functions are the
intra field deinterlacing algorithms.
Deinterlacing is the process of converting an
interlaced video sequence into a progressive
one. Various classes of methods for
performing this conversion exist. Intra-field
methods work by generating each complete
image from the pixel data of a single field.
Missing pixels are generated by interpolating
available neighboring pixels. Thus, these
methods may be classified as local
neighborhood functions. Simple intra field
deinterlacing methods consist in generating
missing pixels by copying the available pixel

139

Int. J. Elec&Electr.Eng&Telecoms. 2014 Esterurani Jaladi and G S J Mani Kumar, 2014

just above or below (a method commonly
called BOB) or by linear interpolation between
the pixel right above and the one right below.
These methods often yield poor quality results.
Edge-based methods aim at improving quality
by tackling a specific artifact: jagged edges.
They work by detecting edges in video fields
using various methods, and then interpolating
in a direction parallel to these edges. The
vanilla edge-based method is Edge-Based
Line Averaging (ELA). Other, more complex
methods aim at further improving image
quality through higher angular resolution and
more reliable edge detection. They include
enhanced ELA (EELA), modified ELA
(MELA), pattern-based directional
interpolation (PBDI), and others.An
application-specific instruction-set processor
(ASIP) is a component used in system-on-a-
chip design. The instruction set of an ASIP is
tailored to benefit a specific application. This
specialization of the core provides a tradeoff
between the flexibility of a general purpose
CPU and the performance of an ASIC.

Some ASIPs have a configurable
instruction set. Usually, these cores are divided
into two parts: static logic which defines a
minimum ISA (instruction-set architecture) and
configurable logic which can be used to design
new instructions. The configurable logic can
be programmed either in the field in a similar
fashion to an FPGA or during the chip
synthesis.

Developers of complex electronic systems
are continuously faced with the challenge of
designing more integrated products that offer
higher levels of flexibility to address evolving
market needs. These devices have a broad
range of data processing functions which

require programmability and power-efficiency.
To meet highly specialized processing
requirements in their SoCs, designers often
turn to application-specific instruction-set
processors (ASIPs), which offer more
architectural specialization as well as
instruction and data–level parallelism
compared to general-purpose processors.

Synopsys’ Processor Designer and IP
Designer (including IP Programmer and MP
Designer, formerly products of Target
Compiler Technologies) are proven tools for
automating and accelerating the design of
highly-efficient ASIPs.

ASIPs possess an instruction set which is
tailored to benefit a specific application. Such
specialization allows ASIPs to serve as an
intermediate between two dominant processor
design styles- ASICs which has high
processing abilities at the cost of limited
programmability and Programmable solutions
such as FPGAs that provide programming
exibility at the cost of less energy efficiency. In
this dissertation the goal is to design ASIP,
keeping in mind a temperature sensor system.
The platform used for processor design is LISA
2.0 description language and processor
designing environment from Co-Ware. Co-
ware processor de-signer allows processor
architecture to be defined at an abstract level
and automatic generation of chain of software
tools like assembler, linker and simulator for
functional verification followed by RTL level
description. RTL level description is used to
generate synthesized report of the design
using RTL compiler and finally the layout is
created using Cadence encounter.

ASIP is Application Specific Instruction-set

140

Int. J. Elec&Electr.Eng&Telecoms. 2014 Esterurani Jaladi and G S J Mani Kumar, 2014

Processor dedicated designed for an
application domain. ASIP instruction set is
specifically designed to accelerate heavy and
most used functions. ASIP architecture is
designed to implement the assembly
instruction set with minimum hardware cost.
ASIP DSP is an application specific digital
signal processor for iterative data manipulation
and transformation extensive applications.
General-purpose processor designers think of
both the maximum performance and maximum
flexibility. The instruction set must be general
enough to support general applications. The
compiler should offer compilation for all
programs and to adapt all programmers’
coding behaviors. ASIP designers have to
think about applications and cost first. Usually
the biggest challenges for ASIP designers are
the silicon cost and power consumption.
Based on the carefully specified function
coverage, the goal of an ASIP design is to
reach the highest performance over silicon,
over power consumption, as well over the
design cost. The requirement on flexibility
should be sufficient instead of ultimate. The
performance is application specific instead of
the highest one. In this tutorial, ASIP,
application specific instruction set processor,
will be introduced and discussed for audience
who want to know ASIP yet not want to design
it. The introduction includes ASIP design flow,
source code profiling, architecture exploration,
assembly instruction set design, design of
assembly language programming tool chain,
firmware design, benchmarking, and micro
architecture design. Two examples, design for
instruction set level acceleration of radio
baseband, and design for instruction set level
acceleration of image and video signal
processing, will be introduced.

Deinterlacing

Deinterlacing is the process of converting
interlaced video, such as common analog
television signals or 1080i format HDTV
signals, into a non-interlaced form. Interlaced
video frame consists of two sub-fields taken
in sequence, each sequentially scanned at
odd then even lines of the image sensor;
analog television employed this technique
because it allowed for less transmission
bandwidth and further eliminated the perceived
flicker that a similar frame rate would give
using progressive scan. CRT based displays
were able to display interlaced video correctly
due to its complete analogue nature. All of the
newer displays are inherently digital in that the
display comprises discrete pixels.
Consequently the two fields need to be
combined into a single frame, which leads to
various visual defects which the deinterlacing
process should try to minimise. Deinterlacing
has been researched for decades and employs
complex processing algorithms; however,
consistent results have been very hard to
achieve.

Intra-Field Deinterlacing

Three ASIP implementations of intra-field
deinterlacing algorithms were created: one of
the ELA algorithm, one of Enhanced ELA and
one of the PBDI algorithm. These are three
edge-based algorithms of differing complexity.
Each implementation is intended to process
24-bit color pixel data (eight bits per color
component). Sixteen pixels are generated in
nine instruction cycles, and the data path has
sufficient width to process four pixels in
parallel. The architectures of the three
implementations are very similar. Simulations

141

Int. J. Elec&Electr.Eng&Telecoms. 2014 Esterurani Jaladi and G S J Mani Kumar, 2014

were performed with a data set of four images
each having a resolution of 352 288 pixels.
Also, a data cache size of 64 kB, with 64 bytes
per cache line, was used for the simulations in
this section and the next. The clock frequency
and processor area are estimates given by
the Tensilica tools and assume a 130 nm low
voltage process. The area estimates given by
the tools do not include the size of the data
cache. The slight decrease in clock frequency
of the ASIPs when compared to the reference
configuration is due to the presence of the 128-
bit load/store unit. The custom instructions
were designed and pipelined to leave the
clock frequency unchanged. The three
algorithms possess very different
computational complexities. The execution
time of the software implementation of the
most complex algorithm, PBDI, is 14 times that
of the simplest algorithm, ELA. However, the

results show that the processing speed is
roughly the same for all three ASIP designs.

DESIGN OF CUSTOM

INSTRUCTIONS

In this section, we present the steps involved
in the choice of custom instructions and
application-specific registers. These steps are
as follows: first, SIMD instructions which
produce multiple output pixels in parallel are
created. These instructions make use of a
specific intra-line data reuse scheme. Then,
each SIMD instruction is split into multiple
instructions throughpipelining in order to
increase throughput. Some hardware
simplifications may be possible at that point.
Finally, the load and store instructions are
created. Figure 2(a) shows the C language
code of a very simple local neighborhood
function. This example will be used to illustrate
the various steps involved in the design of

Figure 2: Simple Local Neighborhood Function Example with (a) C Language Code

142

Int. J. Elec&Electr.Eng&Telecoms. 2014 Esterurani Jaladi and G S J Mani Kumar, 2014

Consequently, there are registers for the input
pixels between the load operations and the
processing operations, and also for the output
pixels between the processing operations and
the store operations. These registers are
noted in the textual representation by the time
delay operator, with having the semantic“
delayed by one execution cycle”.

A. Custom SIMD Instructions

The creation of SIMD instructions,which
calculate more than one pixel in parallel, is
discussed in this section. Calculating many
pixels in parallel leads to an increase in silicon
area requirements, and only leads to a
performance improvement if the datapath is
not starved by an inability to feed data and
retrieve results at a sufficient rate. For this
reason, the number of pixels calculated in
parallel must be balanced with the size of the

custom instructions and was contrived to
exhibit all the proposed simplifications for
illustrative purposes. Each given practical
algorithm will likely allow for some of the
possible simplifications but not all them. In the
code of Figure 2(a), and are arbitrary pure
functions. Figure 2(b) shows a representation
of a single custom instruction which could
implement the local neighborhood function of
Figure 2(a). In Figure 2(b), labelled squares
indicate input and output pixels. These pixels
are typically stored in memory locations. Thus,
the squares are indicative of load and store
operations. Labelled ellipses represent
processing operations, and edges represent
intermediate results. These edges are
indicative of data dependencies. Finally, the
vertical rectangles represent registers. In order
to simplify data reuse and instruction
scheduling, a load-store architecture is used.

Figure 3: Single SIMD Custom Instruction

143

Int. J. Elec&Electr.Eng&Telecoms. 2014 Esterurani Jaladi and G S J Mani Kumar, 2014

bus used to access the data in memory. The
link between and the bus size is addressed in
Section V-F.

RESULTS

This section presents the results obtained for
the implementation of various local
neighborhood functions using the approach
described in previous sections. Three intra-
field deinterlacing algorithms were
implemented, as well as 2-D convolution with

four different kernel sizes. Performance results
for one of the deinterlacing algorithms were
previously published in [21]. All
implementations are based on the Xtensa LX2
configurable and extensible processor [29],
[30]. In the configuration which is used for the
ASIPs, it has a 128-bit memory bus and load-
store unit which can be used by custom load-
store instructions. The results presented here
were obtained from cycle-accurate simulations
performed using the Tensilica tools. For

Internal View of a Design

RTL Schematic

144

Int. J. Elec&Electr.Eng&Telecoms. 2014 Esterurani Jaladi and G S J Mani Kumar, 2014

comparison purposes, in each case,
simulation results are presented for the ASIP,
but also for a pure software implementation
running on a bare Xtensa LX2 without
instruction-set extension. In this reference
configuration, the Xtensa LX2 is similar to other
common general-purpose 32-bit RISC
processors.

While digital signal processors aremore
likely to be used in practical real-time video
processing systems, they also differ widely in
architecture and configuration, which makes
it difficult to establish a useful point of
comparison. By contrast, a 32-bit general-
purpose RISC processor is a general basis
against which DSPs and ASIPs alike can be
compared. The reference configuration uses
a 32-bit memory bus. In fact, increasing the
bus width to 128 bits leads to an increase of
29% in processor area but does not improve
execution speed.

This is because the marginal improvement
in terms of the reduced number of clock cycles

is counterbalanced by a decrease in clock
frequency. The clock frequency decrease is
due to the presence of the 128-bit load/store
unit.

A. INTRA-FIELD

DEINTERLACING

Three ASIP implementations of intra-field
deinterlacing algorithms were created: one of
the ELA algorithm [24], one of Enhanced ELA
[25] and one of the PBDI algorithm [27]. These
are three edge-based algorithms of differing
complexity. Each implementation is intended
to process 24-bit color pixel data (eight bits
per color component). Sixteen pixels are
generated in nine instruction cycles, and the
data path has sufficient width to process four
pixels in parallel. The architectures of the three
implementations are very similar. The
architecture of the PBDI implementation is
described in detail in [21]. Simulations were
performed with a data set of four images each
having a resolution of 352 288 pixels. Also, a
data cache size of 64 kB, with 64 bytes per
cache line, was used for the simulations in this

Waveform

145

Int. J. Elec&Electr.Eng&Telecoms. 2014 Esterurani Jaladi and G S J Mani Kumar, 2014

section and the next. A summary of the profiling
results is given in Table I. The clock frequency
and processor area are estimates given by
the Tensilica tools and assume a 130 nm low
voltage process. The area estimates given by
the tools do not include the size of the data
cache. The slight decrease in clock frequency
of the ASIPs when compared to the reference
configuration is due to the presence of the 128-
bit load/store unit. The custom instructions
were designed and pipelined to leave the
clock frequency unchanged. The three
algorithms possess very different
computational complexities. The execution
time of the software implementation of the
most complex algorithm, PBDI, is 14 times that
of the simplest algorithm, ELA. However, the
results show that the processing speed is
roughly the same for all three ASIP designs.
This is to be expected since the pattern of
access to data is the same: in all three cases,
the kernel has a height of two pixels, which
means that two blocks of input pixels are
needed to produce one output block.

CONCLUSION

A systematic approach to the design of ASIPs
for high speed computation of local
neighborhood functions and intra-field
deinterlacing was proposed. This approach
aims at an efficient utilization of the available
memory bandwidth by fully exploiting the data
parallelism inherent to the target algorithm
class. An appropriate choice of custom
instructions and application-specific registers
is used together with a VLIW architecture in
order to mimic a pipelined systolic array.
Results for the implementation of three intra-
field deinterlacing algorithms and four kernel

sizes of the 2-D convolution function were
presented. These results show that a
significant improvement of the processing
speed, the Area-Time (AT) product and the
energy consumption is possible using this
approach. Indeed, speedup factors between
36 and 1330 were obtained when compared
to a pure software implementation. Also, again
compared to a pure software implementation,
the AT product was improved by factors
between 12 and 243. We also report
significant improvements in terms of energy
consumption, with improvement factors
varying between 13 and 262 among the seven
algorithms considered. The results seem to
indicate that the factor of improvement of the
AT product is a good predictor of the
improvement in terms of energy consumption.

REFERENCES

1. Alles M, Vogt T and Wehn N (2008),
“Flexichap: A reconfigurable ASIP for
convolutional, turbo, and LDPC code
decoding”, in Proc. 5th Int. Symp. Turbo
Codes Related Topics, pp. 84–89.

2. Aubertin P, Mohammadi H M, Savaria Y
and Langlois J M P (2009), “High
performance ASIP implementation of
PBDI—A new intra-field deinterlacing
method”, in Proc. Joint IEEE NEWCAS-
TAISA Conf., pp. 372–375.

3. Bosi B, Savaria Y, and Bois G (1999),
“Reconfigurable pipelined 2-D convolvers
for fast digital signal processing,” IEEE
Trans. Very Large Scale Integr. (VLSI)
Syst., Vol. 7, No. 3, pp. 299–308.

4. Buyukkurt B and Najj W A (2008),
“Compiler generated systolic arrays for

146

Int. J. Elec&Electr.Eng&Telecoms. 2014 Esterurani Jaladi and G S J Mani Kumar, 2014

wavefront algorithm acceleration on
FPGAs”, in Proc. Int. Conf. Field
Program. Logic Appl., pp. 655–658.

5. Cardells-Tormo F and Molinet P L (2006),
“Area-efficient 2-D shift-variant
convolvers for FPGA-based digital image
processing,” IEEE Trans. Circuits Syst.
II, Expr. Briefs, Vol. 53, No. 2, pp. 105–
109.

6. Diamantaras K I and Kung S Y (1997),
“A linear systolic array for real-time
morphological image processing,” J.
VLSI Signal Process., Vol. 17, No.1, pp.
43–55.

7. Gerstlauer A and Gajski D D (2002),
“System-level abstraction semantics,” in
Proc. 15th Int. Symp. Syst. Synth., pp.
231–236.

8. Groszschadl J, Ienne P, Pozzi L, Tillich S
and Verna A K (2006), “Combining
algorithm exploration with instruction set
design: A case study in elliptic curve
cryptography”, in Proc. Conf. Design,
Autom. Test Euro, pp. 218–223.

9. Guan X, Lin H, and Fei Y (2009), “Design
of an application-specific instruction set
processor for high-throughput and
scalable FFT,” in Proc. Conf. Design,
Autom., Test Euro. (DATE), pp. 1302–
1307.

10. Guo Z, Buyukkurt B and Najjar W (2004),
“Input data reuse in compiling window
operations onto reconfigurable
hardware”, SIGPLAN Notices, Vol. 39,
No. 7, pp. 249–256.

11. Guo Z, Buyukkurt B, Najjar W and Vissers
K (2005), “Optimized generation of data-

path from c codes for FPGAs”, in Proc.
Conf. Design, Autom., Test Euro, pp.
112–117.

12. Gupta S, Gupta R, Dutt N and Nicolau A
(2004), SPARK: A Parallelizing Approach
to the High-Level Synthesis of Digital
Circuits, NewYork, Springer-Verlag.

13. Jain M K, Balakrishnan M, and Kumar A
(2001), “ASIP design methodologies:
Survey and issues,” in Proc. 14th Int.
Conf. VLSI Design, pp. 76–81.

14. Kappen G, Bahri S, Priebe O, and Noll T
(2007), “Evaluation of a tightly coupled
ASIP/co-processor architecture used in
GNSS receivers,” in Proc. Int. Conf.
Appl.-Specific Syst., Arch. Process.
(ASAP), pp. 1302-1307.

15. Kim S D, Lee J H, Hyun C J and Sunwoo
M H (2006), “ASIP approach for
implementation of H.264/AVC”, in Proc.
Conf. Asia South Pacific Design Autom.,
pp. 758–764.

16. Mollick E (2006), “Establishing Moore’s
law,” IEEE Annals History Comput., Vol.
28, No. 3, pp. 62–75.

17. Muller O, Baghdadi A and Jézéquel M
(2009), “From parallelism levels to a
multi-ASIP architecture for turbo
decoding”, IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., Vol. 17, No. 1,
pp. 92–102.

18. O’Melia S and Elbirt A J (2010),
“Enhancing the performance of
symmetric- key cryptography via
instruction set extensions”, IEEE Trans.
Very Large Scale Integr. (VLSI) Syst.,
Vol. 18, No. 11, pp. 1505–1518.

147

Int. J. Elec&Electr.Eng&Telecoms. 2014 Esterurani Jaladi and G S J Mani Kumar, 2014

19. Porter R B, Frigo J R, Gokhale M,
Wolinski C, Charot F, and Wagner C
(2006), “A run-time re-configurable
parametric architecture for local
neighborhood image processing,” in
Proc. IEEE Comput. Soc. 9th
EUROMICRO Conf. Digit. Syst. Design
(DSD), pp. 107–115.

20. Saponara S, Fanucci L, Marsi S,
Ramponi G, Kammler D and Witte E

(2007), “Application-specific instruction-

set processor for retinex-like image and

video processing”, IEEE Trans. Circuits

Syst. II, Expr. Briefs, Vol. 54, No. 7, pp.

596–600.

21. Yadav D, Gupta A, and Mishra A, “A fast

and area efficient 2-D convolver for real

time image processing,” in Proc. IEEE

Region 10 Conf. TENCON, pp. 1–6.

